2023
71. | Teli P, Nachanekar A, Kale V, Vaidya A. Priming mesenchymal stromal cells with neurotrophic factors boosts the neuro-regenerative potential of their secretome. Regen Med. 2023 Apr;18(4):329-346. doi: 10.2217/rme-2022-0201. Epub 2023 Mar 23. PMID: 36950925. |
70. | Das M, Teli P, Vaidya A, Kale V. Secretome of Young Mesenchymal Stromal Cells Rejuvenates Aged Mesenchymal Stromal Cells by Normalizing Their Phenotype and Restoring Their Differentiation Profile. Stem Cells Dev. 2023 Jan;32(1-2):12-24. doi: 10.1089/scd.2022.0213. PMID: 36453235 |
69. | Dumasia NP, Khanna AP, Pethe PS. Retinoic acid signaling is critical for generation of pancreatic progenitors from human embryonic stem cells. Growth Factors. 2023 Feb;41(1):8-19. doi: 10.1080/08977194.2022.2144284. Epub 2022 Nov 14. PMID: 36373834. |
68. | Suthar JK, Vaidya A, Ravindran S. Toxic implications of silver nanoparticles on the central nervous system: A systematic literature review. J Appl Toxicol. 2023 Jan;43(1):4-21. doi: 10.1002/jat.4317. Epub 2022 Mar 23. PMID: 35285037. |
67. | Timothy P, Behere, I, Surendra P, Ingavle G. Highly interconnected porous monolithic and beaded polymers using high internal phase emulsion polymerization: tuning porous architecture through synthesis variables. Polymer International 72, (4)451 – 466. 10.1002/pi.6489. |
2022
66. | Pallavi Budgude, Prajakta Teli, Anuradha Vaidya and Vaijayanti Kale (2022) The Role of Autophagy in the Regulation of Hematopoietic Stem Cells. In Autophagy in Stem Cell Maintenance and Differentiation. Series: Stem Cell Biology and Regenerative Medicine. Editors: Bhupendra V. Shravage · Kursad Turksen. ISBN: 978-3-031-17361-5, ISBN 978-3-031-17362-2 (eBook) https://doi.org/10.1007/978-3-031-17362-2_5. Book Chapter. |
65. | Prasad Pethe (2022). Polycomb-group proteins and epigenetic control of gene activity. Handbook of Epigenetics The New Molecular and Medical Genetics. Editor: Trygve Tollefsbol. eBook ISBN: 9780323919500, Hardcover ISBN: 9780323919098". Book Chapter. |
64. | Ingavle G, Das M. Bench to Bedside: New Therapeutic Approaches with Extracellular Vesicles and Engineered Biomaterials for Targeting Therapeutic Resistance of Cancer Stem Cells. ACS Biomater Sci Eng. 2022 Nov 14;8(11):4673-4696. doi: 10.1021/acsbiomaterials.2c00484. |
63. | Das M, Teli P, Vaidya A, Kale VP. Secretome of young mesenchymal stromal cells rejuvenates aged mesenchymal stromal cells by normalizing their phenotype and restoring their differentiation profile. Stem Cells Dev. 2022 Dec 1. doi: 10.1089/scd.2022.0213. |
62. | Budgude P, Vaidya A, Kale V. Cell-intrinsic factors governing quiescence vis-à-vis activation of adult hematopoietic stem cells. Mol Cell Biochem. 2022 Oct 30. doi: 10.1007/s11010-022-04594-y. |
61. | Kale VP. A chimeric feeder comprising transforming growth factor beta 1- and basic fibroblast growth factor-primed bone marrow-derived mesenchymal stromal cells suppresses the expansion of hematopoietic stem and progenitor cells. Cell Biol Int. 2022 Dec;46(12):2132-2141. doi: 10.1002/cbin.11904. |
60. | Dumasia NP, Khanna AP,Pethe PS. Retinoic acid signaling is critical for generation of pancreatic progenitors from human embryonic stem cells. Growth Factors. 2022 Nov 14:1-12. doi: https://doi.org/10.1080/08977194.2022.2144284 |
59. | Kale V. Granulocytes Negatively Regulate Secretion of Transforming Growth Factor β1 by Bone Marrow Mononuclear Cells via Secretion of Erythropoietin Receptors in the Milieu. Stem Cell Rev Rep. 2022 Apr;18(4):1408-1416. doi: 10.1007/s12015-021-10292-x. |
58. | Pendse S, Vaidya A, Kale V. Clinical applications of pluripotent stem cells and their derivatives: current status and future perspectives. Regen Med. 2022 Jun 15. doi: 10.2217/rme-2022-0045. Epub ahead of print. PMID: 35703035. |
57. | Holkar K, Kale V, Ingavle G. Well-orchestrated physico-chemical and biological factors for enhanced secretion of osteogenic and angiogenic extracellular vesicles by mesenchymal stem cells in a 3D culture format. Biomater Sci. 2022 Jul 11. doi: 10.1039/d2bm00750a. Epub ahead of print. PMID: 35815723. |
56. | Virdi JK, Pethe P. Soft substrate maintains stemness and pluripotent stem cell-like phenotype of human embryonic stem cells under defined culture conditions. Cytotechnology. 2022. https://doi.org/10.1007/s10616-022-00537-z |
55. | Pendse S, Kale V, Vaidya A. The Intercellular Communication Between Mesenchymal Stromal Cells and Hematopoietic Stem Cells Critically Depends on NF-κB Signalling in the Mesenchymal Stromal Cells. Stem Cell Rev Rep. 2022 Mar 26. doi: 10.1007/s12015-022-10364-6. Epub ahead of print. PMID: 35347654. |
54. | Teli P, Kale V, Vaidya A. Mesenchymal stromal cells-derived secretome protects Neuro-2a cells from oxidative stress-induced loss of neurogenesis. Exp Neurol. 2022 Aug;354:114107. doi: 10.1016/j.expneurol.2022.114107. Epub 2022 May 10. PMID: 35551901. |
53. | Behere I and Ingavle G. In vitro and in vivo advancement of multifunctional electrospun nanofiber scaffolds in wound healing applications: Innovative nanofiber designs, stem cell approaches, and future perspectives. Accepted for publication in Journal of Biomedical Material Research A. https://doi.org/10.1002/jbm.a.37290 |
2021
52. | Das M, Kale V. Involvement of extracellular vesicles in aging process and their beneficial effects in alleviating aging-associated symptoms. Cell Biol Int. 2021 Aug 24. https://doi.org/10.1007/s12015-021-10240-9. |
51. | Budgude P, Kale V, Vaidya A. Pharmacological Inhibition of p38 MAPK Rejuvenates Bone Marrow Derived-Mesenchymal Stromal Cells and Boosts their Hematopoietic Stem Cell-Supportive Ability. Stem Cell Rev Rep. 2021 Aug 22. https://doi.org/10.1007/s12015-021-10240-9. |
50. | Holkar, K., Kale, V., Ingavle, G. Hydrogel-Assisted 3D Model to Investigate the Osteoinductive Potential of MC3T3-Derived Extracellular Vesicles. (2021) ACS Biomater Sci Eng 7 (6), pp. 2687-2700. https://doi.org/10.1021/acsbiomaterials.1c00386 . |
49. | Das M, Pethe P. Differential expression of retinoic acid alpha and beta receptors in neuronal progenitors generated from human embryonic stem cells in response to TTNPB (a retinoic acid mimetic). Differentiation. 2021 Aug 13;121:13-24. https://doi.org/10.1016/j.diff.2021.08.001 . |
48. | Pethe, P., Kale, V. Placenta: A gold mine for translational research and regenerative medicine. (2021) Reproductive Biol 21 (2), art. no. 100508. https://doi.org/10.1016/j.repbio.2021.100508 . |
47. | Pethe, P., Noel, V.S., Kale, V. Deterministic role of sonic hedgehog signalling pathway in specification of hemogenic versus endocardiogenic endothelium from differentiated human embryonic stem cells. (2021) Cells Dev 166, art. no. 203685. https://doi.org/10.1016/j.cdev.2021.203685 . |
46. | Teli, P., Kale, V., Vaidya, A. Extracellular vesicles isolated from mesenchymal stromal cells primed with neurotrophic factors and signaling modifiers as potential therapeutics for neurodegenerative diseases. (2021) Curr Res Transl Med 69 (2), art. no. 103286. https://doi.org/10.1016/j.retram.2021.103286 |
45. | Shinde, P., Kuhikar, R., Kulkarni, R., Khan, N., Limaye, L., Kale, V. Curcumin restores the engraftment capacity of aged hematopoietic stem cells and also reduces PD-1 expression on cytotoxic T cells. (2021) J Tissue Eng Regen Med. 15 (4), pp. 388-400. https://doi.org/10.1002/term.3180 . |
44. | Budgude, P., Kale, V., Vaidya, A. Cryopreservation of mesenchymal stromal cell-derived extracellular vesicles using trehalose maintains their ability to expand hematopoietic stem cells in vitro. (2021) Cryobiology 98, pp. 152-163. https://doi.org/10.1016/j.cryobiol.2020.11.009 . |
43. | Pendse, S., Kale, V., Vaidya, A. Extracellular vesicles isolated from mesenchymal stromal cells primed with hypoxia: Novel strategy in regenerative medicine. (2021) Curr Stem Cell Res Ther 16 (3), pp. 243-261. https://doi.org/10.2174/1574888X15999200918110638 . |
42. | Kuhikar, R., Khan, N., Khare, S.P., Fulzele, A., Melinkeri, S., Kale, V., Limaye, L. Neutrophils generated in vitro from hematopoietic stem cells isolated from apheresis samples and umbilical cord blood form neutrophil extracellular traps. (2021) Stem Cell Res 50, art. no. 102150. https://doi.org/10.1016/j.scr.2020.102150 |
41. | Ozulumba, T., Ingavle, G., Gogotsi, Y., Sandeman, S. Moderating cellular inflammation using 2-dimensional titanium carbide MXene and graphene variants. (2021) Biomater Sci 9 (5), pp. 1805-1815. https://doi.org/10.1039/d0bm01953d"> . |
40. | Avadhanam, V., Ingavle, G., Zheng, Y., Kumar, S., Liu, C., Sandeman, S. Biomimetic bone-like composites as osteo-odonto-keratoprosthesis skirt substitutes (2021) J Biomater Appli 35 (8), pp. 1043-1060. https://doi.org/10.1177/0885328220972219 . |
39. | Borah, R., Ingavle, G.C., Kumar, A., Sandeman, S.R., Mikhalovsky, S.V. Surface-Functionalized Conducting Nanofibers for Electrically Stimulated Neural Cell Function (2021) Biomacromolecules 22 (2), pp. 594-611. https://doi.org/10.1021/acs.biomac.0c01445 . |
38. | Dumasia, N.P., Khanna, A.P., Pethe, P.S. Sonic hedgehog signals hinder the transcriptional network necessary for pancreatic endoderm formation from human embryonic stem cells. (2021) Genes Cells 26 (5), pp. 282-297. https://doi.org/10.1111/gtc.12839 |
37. | Virdi, J.K., Pethe, P. Biomaterials Regulate Mechanosensors YAP/TAZ in Stem Cell Growth and Differentiation. (2021) Tissue Eng Regen Med. 18 (2), pp. 199-215. https://doi.org/10.1007/s13770-020-00301-4 . |
36. | Pethe, P.S., Dumasia, N.P., Bhartiya, D. Effect of Sonic hedgehog pathway inhibition on PDX1 expression during pancreatic differentiation of human embryonic stem cells. (2021) Mol Bio Rep 48 (2), pp. 1615-1623. https://doi.org/10.1007/s11033-021-06147-w . |
35. | Desai D, Pethe P. ChIP-qPCR for Polycomb Group Proteins During Neuronal Differentiation of Human Pluripotent Stem Cells. Methods Mol Biol. 2021 May 5. https://doi.org/10.1007/7651_2021_400 . |
2020
34. | Das, M., Kale, V. Extracellular vesicles: Mediators of embryo-maternal crosstalk during pregnancy and a new weapon to fight against infertility. (2020) Eur J Cell Biol 99 (8), art. no. 151125, . https://doi.org/10.1016/j.ejcb.2020.151125 |
33. | Kale, V.P. Transforming growth factor-β boosts the functionality of human bone marrow-derived mesenchymal stromal cells. (2020)Cell Biol Int 44 (11), pp. 2293-2306. https://doi.org/10.1002/cbin.11437 |
32. | Holkar, K., Vaidya, A., Pethe, P., Kale, V., Ingavle, G. Biomaterials and extracellular vesicles in cell-free therapy for bone repair and regeneration: Future line of treatment in regenerative medicine. (2020) Materilia 12, art. no. 100736, https://doi.org/10.1016/j.mtla.2020.100736 |
31. | Kulkarni, R., Kale, V. Physiological Cues Involved in the Regulation of Adhesion Mechanisms in Hematopoietic Stem Cell Fate Decision. (2020) Front Cell Dev Biol 8, art. no. 611, .. https://doi.org/10.3389/fcell.2020.00611 |
30. | Budgude, P., Kale, V., Vaidya, A. Mesenchymal stromal cell-derived extracellular vesicles as cell-free biologics for the ex vivo expansion of hematopoietic stem cells. (2020) Cell Bio Int 44 (5), pp. 1078-1102. https://doi.org/10.1002/cbin.11313. . |
29. | Behere I, Pardawala Z, Vaidya A, Kale V, Ingavle G. Osteogenic differentiation of an osteoblast precursor cell line using composite PCL-gelatinn HAp electrospun nanofiber mesh. Inter J of Polym Mater Polym Biomater, 2020, May, 1-15. https://doi.org/10.1080/00914037.2020.1767619 . |
28. | Tembe, S., Fernandes, S., Khan, N., Melinkeri, S., Kale, V., Limaye, L. Establishment of human iPSC line from patient of Indian ethnicity carrying homozygous CD8/9 (+G) beta thalassemia mutation. (2020) Stem Cell Res 44, art. no. 101772, . https://doi.org/10.1016/j.scr.2020.101772 . |
27. | Kuhikar, R., Khan, N., Philip, J., Melinkeri, S., Kale, V., Limaye, L. Transforming growth factor β1 accelerates and enhances in vitro red blood cell formation from hematopoietic stem cells by stimulating mitophagy. (2020) Stem Cell Res Ther 11 (1), art. no. 71,. https://doi.org/10.1186/s13287-020-01603-z . |
26. | Dumasia, N.P., Pethe, P.S. Pancreas development and the Polycomb group protein complexes. (2020) Mech Dev 164, art. no. 103647, https://doi.org/10.1016/j.mod.2020.103647 |
25. | Desai, D., Khanna, A., Pethe, P. PRC1 catalytic unit RING1B regulates early neural differentiation of human pluripotent stem cells. (2020) Exp Cell Res 396 (1), art. no. 112294, https://doi.org/10.1016/j.yexcr.2020.112294 . |
24. | Desai, D., Khanna, A., Pethe, P. Inhibition of RING1B alters lineage specificity in human embryonic stem cells. (2020) Cell Biol Int 44 (6), pp. 1299-1311. https://doi.org/10.1002/cbin.11325 |
23. | Thakur, S., Storewala, P., Basak, U., Jalan, N., Pethe, P. Clocking the circadian genes in human embryonic stem cells. (2020) Stem Cell Investig 7 (May), art. no. 9, https://doi.org/10.21037/sci-2020-014 . |
22. | Desai, D., Pethe, P. Polycomb repressive complex 1: Regulators of neurogenesis from embryonic to adult stage. (2020) J Cell Physiol 235 (5), pp. 4031-4045. https://doi.org/10.1002/jcp.29299 . |
21. | Tennison SR, Kowalski M, Avery T, Sandeman SR, Howell CA, Zheng Y, Ingavle G, Mikhalovsky SV, Nuraliyev M. Shaped nanoporous bodies. US Patent 10,773,234, 2020. |
20. | Sandeman S, Zheng Y, Ingavle G, Ozulumba T, Howell C, Mikhalovsky S. Advances in Nanostructured Carbons for Biomedical Applications. 1st Edition, 2020, Jenny Stanford Publishing, eBook ISBN9780429428647. |
2019
19. | Kale, V.P. Application of "primed" Mesenchymal Stromal Cells in Hematopoietic Stem Cell Transplantation: Current Status and Future Prospects. (2019) Stem Cell Dev 28 (22), pp. 1473-1479. https://doi.org/10.1089/scd.2019.0149 |
18. | Fernandes, S., Khan, N., Kale, V., Limaye, L. Catalase incorporation in freezing mixture leads to improved recovery of cryopreserved iPSC lines. (2019) Crybiology 90, pp. 21-29. https://doi.org/10.1016/j.cryobiol.2019.09.003 |
17. | Ingavle, G., Shabrani, N., Vaidya, A., Kale, V. Mimicking megakaryopoiesis in vitro using biomaterials: Recent advances and future opportunities. (2019) Acta Biomater 96, pp. https://doi.org/10.1016/j.actbio.2019.07.025 |
16. | Dhenge, A., Kuhikar, R., Kale, V., Limaye, L. Regulation of differentiation of MEG01 to megakaryocytes and platelet-like particles by Valproic acid through Notch3 mediated actin polymerization. (2019) Platelets 30 (6), pp. 780-795. https://doi.org/10.1080/09537104.2018.1528344. |
15. | Ingavle, G., Vaidya, A., Kale, V. Constructing Three-Dimensional Microenvironments Using Engineered Biomaterials for Hematopoietic Stem Cell Expansion. (2019) Tissue Eng Part B Rev . 25 (4), pp. 312-329. https://doi.org/10.1089/ten.teb.2018.0286 |
14. | Fernandes, S., Vinnakota, R., Kumar, J., Kale, V., Limaye, L. Improved neural differentiation of normal and abnormal induced pluripotent stem cell lines in the presence of valproic acid. (2019) J Tissue Eng Regen Med 13 (8), pp. 1482-1496. https://doi.org/10.1002/term.2904. |
13. | Fernandes, S., Tembe, S., Singh, S., Vardhan, S., Nair, V., Kale, V., Limaye, L. Erratum to “Development and characterization of human iPSC line NCCSi004-A from umbilical cord blood (UCB) derived CD34 + cells obtained from donor belonging to Indian ethnic population” [Stem Cell Research Volume 35, March 2019, 101,392](S1873506119300224)(10.1016/j.scr.2019.101392). (2019) 35, art. no. 101404,. https://doi.org/10.1016/j.scr.2019.101404 . |
12. | Fernandes, S., Tembe, S., Singh, S., Vardhan, S., Nair, V., Kale, V., Limaye, L. Development and characterization of human iPSC line NCCSi004-A from umbilical cord blood (UCB) derived CD34+cells obtained from donor belonging to Indian ethnic population. (2019) Stem Cell res 35, art. no. 101392, . https://doi.org/10.1016/j.scr.2019.101392. |
11. | Shinde, P., Khan, N., Melinkeri, S., Kale, V., Limaye, L. Freezing of dendritic cells with trehalose as an additive in the conventional freezing medium results in improved recovery after cryopreservation. (2019) Transfusion 59 (2), pp. 686-696. https://doi.org/10.1111/trf.15028 |
10. | Vadakke-Madathil, S., Limaye, L.S., Kale, V.P., Chaudhry, H.W. Flow cytometry and cell sorting using hematopoietic progenitor cells. (2019) Methods Mol Bio 2029, pp. 235-246. https://doi.org/10.1007/978-1-4939-9631-5_18 |
9. | Vaidya, A., Singh, S., Limaye, L., Kale, V. Chimeric feeders of mesenchymal stromal cells and stromal cells modified with constitutively active AKT expand hematopoietic stem cells. (2019) Regen med 14 (6), pp. 535-554. https://doi.org/10.2217/rme-2018-0157 |
8. | Jalnapurkar, S., Moirangthem, R.D., Singh, S., Limaye, L., Kale, V. Microvesicles Secreted by Nitric Oxide-Primed Mesenchymal Stromal Cells Boost the Engraftment Potential of Hematopoietic Stem Cells. (2019) Stem Cells 37 (1), pp. 128-138. https://doi.org/10.1002/stem.2912 |
7. | Kulkarni, R.S., Bajaj, M.S., Kale, V.P. Induction and detection of autophagy in aged hematopoietic stem cells by exposing them to microvesicles secreted by HSC-supportive mesenchymal stromal cells. (2019) Methods Mol Bio 1854, pp. 21-34.https://doi.org/10.1007/7651_2018_166. |
6. | Ingavle, G.C., Gionet-Gonzales, M., Vorwald, C.E., Bohannon, L.K., Clark, K., Galuppo, L.D., Leach, J.K. Injectable mineralized microsphere-loaded composite hydrogels for bone repair in a sheep bone defect model. Biomaterials, (2019) 197, pp. 119-128. https://doi.org/10.1016/j.biomaterials.2019.01.005 |
5. | Gionet-Gonzales, M., Ingavle, G.C., Vorwald, C., Bohannon, L.K., Clark, K., Galuppo, L.D., Leach, J.K. Injectable composite hydrogels for bone repair in a sheep bone defect model. (2019) Biomaterials 40, p. 360. |
2018
4. | Vaidya A, Kale V, Poonawala M, Ghode S. Mesenchymal stromal cells enhance the hematopoietic stem cell-supportive activity of resveratrol. (2018) Regen Med 13 (4), pp. 409-425. https://doi.org/10.2217/rme-2017-0143 |
3. | Meng F, Seredych M, Chen C, Gura V, Mikhalovsky S, Sandeman S, Ingavle G, Ozulumba T, Miao L, Anasori B, Gogotsi Y. MXene Sorbents for Removal of Urea from Dialysate: A Step toward the Wearable Artificial Kidney. ACS Nano. 2018 Oct 23;12(10):10518-10528. https://doi.org/10.1021/acsnano.8b06494. |
2. | Borah R, Ingavle GC, Sandeman SR, Kumar A, Mikhalovsky SV. Amine-Functionalized Electrically Conductive Core-Sheath MEH-PPV:PCL Electrospun Nanofibers for Enhanced Cell-Biomaterial Interactions. ACS Biomater Sci Eng. 2018 Sep 10;4(9):3327-3346. https://doi.org/10.1021/10.1021/acsbiomaterials.8b00624. |
1. | Borah R , Ingavle GC , Sandeman SR , Kumar A , Mikhalovsky S . Electrically conductive MEH-PPV:PCL electrospun nanofibres for electrical stimulation of rat PC12 pheochromocytoma cells. Biomater Sci. 2018 Aug 21;6(9):2342-2359. https://doi.org/10.1039/c8bm00559a |